Chemical Reactions

Objectives:

(4-1) How do I model a chemical reaction with a using formulas?

(#4-1) Students can represent/identify chemicals in terms of reactants and products in a chemical equation format.

(4-1b) Students can represent/identify a [combination(synthesis)/Decomposition] reactions in terms of a chemical equation.

Characteristics of Chemical Equations

- 1. Represents known facts.
 - 4 indicators of chemical rxn:
- 2. Contains the correct formulas for reactants and products.
- 3. Satisfies Law of Conservation of Mass.

Matter cannot be created nor destroyed

Equations must be balanced.

The equation must contain the correct formulas for reactants and products

WORD EQUATIONS represent the reactant and products of a chemical reaction by their <u>names</u>

Write the word equation for the reaction of methane gas with oxygen gas to form carbon dioxide and water.

Example of a word equation:

FORMULA EQUATIONS represent the reactant and products of a chemical reaction by their <u>symbols or formulas</u>

Example of a formula equation:

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

From word problem to balanced equation:

- 1. Write word equation.
- 2. Write each individual symbol or formula correctly according to rules (diatomics, ionic rules, covalent rules)
- 3. Balance equation with coefficients.

From word problem to balanced equation:

- 1. Write word equation.
- 2. Write each individual symbol or formula correctly according to rules (diatomics, ionic rules, covalent rules)
- 3. Balance equation with coefficients.

Write the word equation, formula equation, and balance.

1. When isopropanol (C₃H₈O) burns in oxygen, carbon dioxide, water, and heat are produced.

isopropanol + oxygen
$$\longrightarrow$$
 carbon dioxide and water C_3H_8O + O_2 \longrightarrow CO_2 + H_2O

(now balance it)

2. When fluorine gas is put into contact with sodium metal at high temperatures, sodium fluoride powder is created in an exothermic reaction.

Balancing Equations: Change coeffecients, not subscripts. Tips:

- 1. Check for diatomic molecules (H₂, O₂, Br₂, F₂, I₂, N₂, Cl₂) If these elements appear by themselves in an equation, they must be written with the subscript 2.
- 2. Balance Metals, then nonmetals,
- 3. Balance polyatomic ions that appear on both side of the equation as <u>single units</u>
- 4. Balance O and H last. Any element in pure form should be balanced last.
- 5. Recount all atoms (Recheck your work)
- 6. If every coefficient will reduce, rewrite in the simplest whole-number ratio.

	TIPS: Change coefficients only, not the subscripts or balanced formulas Balance different types of atoms one at a time (inventory)
1.	$ \underline{ } Na + \underline{ } H_2O \xrightarrow{ } \underline{ } NaOH + \underline{ } H_2 \\ \underline{ } H \underline{ } \underline{ } O \underline{ } \underline{ } $
2.	$\underline{\hspace{1cm}} Na + \underline{\hspace{1cm}} NaNO_3 \longrightarrow \underline{\hspace{1cm}} Na_2O + \underline{\hspace{1cm}} N_2$
	Na N O
	TIP: Balance polyatomic ions that appear on both side of the equation as single units
3.	$K_3PO_4 + Pb(NO_3)_2 \longrightarrow Pb_3(PO_4)_2 + KNO_3$
	K PO ₄ Pb NO ₃
	TIP: If an element appears in its <u>pure form</u> , leave it until <u>last to balance</u> (often <u>H</u> and <u>O</u> are <u>last to balance</u>)
	TIP: order to balance combustion: C,H, then O
	$\underline{\hspace{1cm}} C_3H_8 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_20$
	Check your work—make sure that the same number of each type of atom are on each side of the equation

Physical states of compounds: symbols in equations - include whenever possible

- (s) or **♦**: solid or precipitate
- (I): <u>liquid</u>
- (g) or **†**: <u>gas</u>
- (aq): <u>aqueous or ions in solution -- dissolved</u>

Common mistakes:

Are these balanced? Are these OK?

$$NO(g) + O_2(g) \rightarrow NO_2(g)$$
 No-- not balanced (need more oxygen on right)

$$NO(g) + O(g) \rightarrow NO_2(g)$$
 No--
Oxygen is diatomic, use O_2

$$NO(g) + \frac{1}{2} O_2(g) \rightarrow NO_2(g)$$
No--
all coefficients must be whole numbers

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g) YES$$

Predicting Products and balancing

Combustion

Decomposition

Synthesis (Combination or Composition)

Combustion Rxns

(review)

fuel and oxygen

Reactant include: end products are always

CO₂ and H₂O

$$C_3H_8 +$$
 \longrightarrow

Decomposition

decompose: to break apart

examples:

$$H_2O --> H_2 + O_2$$

$$CaCO_3 \longrightarrow CaO + CO_2$$

 $AB \longrightarrow A + B$

only one

reactant

Write the word and formula equation for the following:

Magnesium chloride breaks down into elemental form.

Synthesis (Combination or Composition)

synthesis: to make new

examples:

$$Mg + O_2 --> MgO$$

$$Na_2O + CO_2 --> Na_2CO_3$$

 $A + B \longrightarrow AB$

only one product

Write the word and formula equation for the following:

Hydrogen and oxygen react to form water.

hydrogen + oxygen
$$\longrightarrow$$
 water $\overset{\downarrow}{\downarrow}$ $\overset{\downarrow}{\downarrow$

Review Indicate the type of reaction.

Predict the products (balanced formulas).

Balance the equation.

type

____1. ___Cu +___O → _____

 $___2$. $__C_3H_6+__O \rightarrow __$

_____3. ___MgO → _____

____4. __Al + ___Br → _____

_____5. ___NaCl → _____

 $__6. \ __C_6H_{12}O_6 + __0 \rightarrow _$

- 7. Write the symbols for the elements that exist as diatomics in their elemental state.
- 8. Potassium metal and chlorine gas combine to form potassium chloride. Write the balanced equation to show this. What type of reaction is this?